Large phonon drag thermopower boosted by massive electrons and phonon leaking in LaAlO$_3$/LaNiO$_3$/LaAlO$_3$ heterostructure

Abstract

An unusually large thermopower (S) enhancement is induced by heterostructuring thin films of the strongly correlated electron oxide LaNiO3. The phonon-drag effect, which is not observed in bulk LaNiO3, enhances S for thin films compressively strained by LaAlO3 substrates. By a reduction in the layer thickness down to three unit cells and subsequent LaAlO3 surface termination, a 10 times S enhancement over the bulk value is observed due to large phonon drag S (Sg), and the Sg contribution to the total S occurs over a much wider temperature range up to 220 K. The Sg enhancement originates from the coupling of lattice vibration to the d electrons with large effective mass in the compressively strained ultrathin LaNiO3, and the electron-phonon interaction is largely enhanced by the phonon leakage from the LaAlO3 substrate and the capping layer. The transition-metal oxide heterostructures emerge as a new playground to manipulate electronic and phononic properties in the quest for high-performance thermoelectrics.

Publication
Nano Lett.
Terumasa Tadano
Terumasa Tadano
Researcher of Materials Science

My research interests include development of computational methods and softwares for predicting thermal properties of solids, and application of machine-learning methods to material science study