Google scholar citations Publons


  1. R. Masuki, T. Nomoto, R. Arita, and T. Tadano, “Ab-initio structural optimization at finite temperatures based on anharmonic phonon theory: Application to the structural phase transitions of BaTiO3”. [arXiv]

  2. T. Tadano and W. A. Saidi, “First-Principles Phonon Quasiparticle Theory Applied to a Strongly Anharmonic Halide Perovskite” (submitted). [arXiv]

Refereed Papers

  1. D. B. Khadka, Y. Shirai, M. Yanagida, T. Tadano, and K. Miyano, “Interfacial Embedding for High-Efficiency and Stable Methylammonium-Free Perovskite Solar Cells with Fluoroarene Hydrazine”, Adv. Energy Matter. 2202029 (2022). [link]

  2. M. Ohnishi, T. Tadano, S. Tsuneyuki, and J. Shiomi, “Anharmonic phonon renormalization and thermal transport in the type-I Ba8Ga16Sn30 clathrate from first principles”, Phys. Rev. B 106, 024303 (2022). [link] [arXiv]

  3. A. Togo, H. Hayashi, T. Tadano, S. Tsutsui, and I. Tanaka, “LO-mode phonon of KCl and NaCl at 300 K by inelastic X ray scattering measurements and first principles calculations”, J. Phys.: Condens. Matter 34, 365401 (2022). [link] [arXiv]

  4. Y. Nishimura, X. He, T. Katase, T. Tadano, K. Ide, S. Kitani, K. Hanzawa, S. Ueda, H. Hiramatsu, H. Kawaji, H. Hosono, and T. Kamiya, “Electronic and Lattice Thermal Conductivity Switching by 3D−2D Crystal Structure Transition in Nonequilibrium (Pb1−xSnx)Se”, Adv. Electron. Mater. 2200024 (2022). [link]

  5. G. Xing, Y. Miura, and T. Tadano, “Lattice dynamics and its effects on magnetocrystalline anisotropy energy of pristine and hole-doped YCo5 from first principles”, Phys. Rev. B 105, 104427 (2022). [link] [arXiv]

  6. X. He, H. Zhang, T. Nose, T. Katase, T. Tadano, K. Ide, S. Ueda, H. Hiramatsu, H. Hosono, T. Kamiya, “Degenerated Hole Doping and Ultra-Low Lattice Thermal Conductivity in Polycrystalline SnSe by Nonequilibrium Isovalent Te Substitution”, Adv. Sci. 2105958 (2022). [link]

  7. R. Masuki, T. Nomoto, R. Arita, and T. Tadano, “Anharmonic Grüneisen theory based on self-consistent phonon theory: Impact of phonon-phonon interaction neglected in the quasiharmonic theory”, Phys. Rev. B 105, 064112 (2022). [link] [arXiv]

  8. P. Torres, S. Wu, S. Ju, C. Liu, T. Tadano, R. Yoshida, and J. Shiomi, “Descriptors of intrinsic hydrodynamic thermal transport: screening a phonon database in a machine learning approach”, J. Phys.: Condens. Matter 34, 135702 (2022). [link] [arXiv]

  9. K. Masuda, T. Tadano, and Y. Miura, “Crucial role of interfacial s−d exchange interaction in the temperature dependence of tunnel magnetoresistance”, Phys. Rev. B 104, L180403. (2021) [link] [arXiv]

  10. K. Ishioka, T. Tadano, M. Yanagida, Y. Shirai, K. Miyano, “Anharmonic Organic Cation Vibrations in Hybrid Lead Halide Perovskite CH3NH3PbI3”, Phys. Rev. Materials 5, 105402 (2021). [link] [arXiv]

  11. M. Kimura, X. He, T. Katase, T. Tadano, J. M. Tomczak, M. Minohara, R. Aso, H. Yoshida, K. Ide, S. Ueda, H. Hiramatsu, H. Kumigashira, H. Hosono, and T. Kamiya, “Large phonon drag thermopower boosted by massive electrons and phonon leaking in LaAlO3/LaNiO3/LaAlO3 heterostructure”, Nano Lett. 21, 9240–9246 (2021). [link]

  12. T. Katase, X. He, T. Tadano, J. M. Tomczak, T. Onozato, K. Ide, B. Feng, T. Tohei, H. Hiramatsu, H. Ohta, Y. Ikuhara, H. Hosono, and T. Kamiya, “Breaking of thermopower – conductivity trade-off in LaTiO3 film around Mott insulator to metal transition”, Adv. Sci. 2102097 (2021). [link]

  13. M. Charlebois, J. Morée, K. Nakamura, Y. Nomura, T. Tadano, Y. Yoshimoto, Y. Yamaji, T. Hasegawa, K. Matsuhira, M. Imada, “Ab initio Derivation of Low-Energy Hamiltonians for Systems with Strong Spin-Orbit Interaction and Its Application to Ca5Ir3O12”, Phys. Rev. B 104, 075153 (2021). [link] [arXiv]

  14. K. Cho, T. Yamada, H. Tahara, T. Tadano, H. Suzuura, M. Saruyama, R. Sato, T. Teranishi, and Y. Kanemitsu, “Luminescence Fine Structures in Single Lead Halide Perovskite Nanocrystals: Size Dependence of the Exciton–Phonon Coupling”, Nano Lett. 21, 7206-7212 (2021). [link]

  15. T. Ishikawa, T. Fukazawa, G. Xing, T. Tadano, and T. Miyake, “Evolutionary search for cobalt-rich compounds in the yttrium-cobalt-boron system”, Phys. Rev. Materials 5, 054408 (2021). [link] [arXiv]

  16. S. Ju, R. Yoshida, C. Liu, K. Hongo, T. Tadano, J. Shiomi, “Exploring diamondlike lattice thermal conductivity crystals via feature-based transfer learning”, Phys. Rev. Materials 5, 053801 (2021). [link] [ChemRxiv]

  17. G. Xing, T. Ishikawa, Y. Miura, T. Miyake, and T. Tadano, “Lattice dynamics effects on finite-temperature stability of R1−xFex (R = Y, Ce, Nd, Sm, and Dy) alloys from first principles”, J. Alloys Compd. 874, 159754 (2021). [link] [arXiv]

  18. T. Katase, Y. Takahashi, X. He, T. Tadano, K. Ide, H. Yoshida, S. Kawachi, J. Yamaura, M. Sasase, H. Hiramatsu, H. Hosono, and T. Kamiya, “Reversible 3D-2D Structural Phase Transition and Giant Electronic Modulation in Nonequilibrium Alloy Semiconductor, Lead-Tin-Selenide”, Sci. Adv. 7, eabf2725 (2021). [link]

  19. S. Kawano, T. Tadano, and S. Iikubo, “Effect of Halogen Ions on the Low Thermal Conductivity of Cesium Halide Perovskite”, J. Phys. Chem. C 125, 91-97 (2021). [link]

  20. K. Nakamura, Y. Yoshimoto, Y. Nomura, T. Tadano, M. Kawamura, T. Kosugi, K. Yoshimi, T. Misawa, and Y. Motoyama, “RESPACK: An ab initio tool for derivation of effective low-energy model of material”, Comput. Phys. Commun. 261, 107781 (2021). [link] [arXiv]

  21. Z. Zeng, S. Li, T. Tadano, and Y. Chen, “Anharmonic lattice dynamics and thermal transport of monolayer InSe under equibiaxial tensile strains”, J. Phys.: Condens. Matter 32, 475702 (2020). [link]

  22. Y. Wu, W. Saidi, J. Wuenschell, T. Tadano, P. Ohodnicki, B. Chorpening, and Y. Duan, “Anharmonicity Explains Temperature Renormalization Effects of the Band Gap in SrTiO3”, J. Phys. Chem. Lett. 11, 2518–2523 (2020). [link]

  23. T. Tanimoto, K. Suekuni, T. Tanishita, H. Usui, T. Tadano, T. Kamei, H. Saito, H. Nishiate, C. H. Lee, K. Kuroki, and M. Ohtaki, “Enargite Cu3PS4: A Cu–S-Based Thermoelectric Material with a Wurtzite-Derivative Structure”, Adv. Funct. Mater. 30, 2000973 (2020). [link]

  24. M. Hirayama*, T. Tadano*, Y. Nomura, and R. Arita, “Materials design of dynamically stable d9 layered nickelates”, Phys. Rev. B 101, 075107 (2020). (* equal contribution). [link] [arXiv]

  25. I. Errea, F. Belli, L. Monacelli, A. Sanna, T. Koretsune, T. Tadano, R. Bianco, M. Calandra, R. Arita, F. Mauri, and J. A. Flores-Livas, “Quantum Crystal Structure in the 250 K Superconducting Lanthanum Hydride”, Nature 578, 66-69 (2020). [link] [arXiv] [プレスリリース]

  26. Y. Nomura, M. Hirayama, T. Tadano, Y. Yoshimoto, K. Nakamura, and R. Arita, “Formation of 2D single-component correlated electron system and band engineering in the nickelate superconductor NdNiO2”, Phys. Rev. B 100, 205138 (2019) Editors’ Suggestion. [link] [arXiv] [ article]

  27. T. Tadano, Y. Nomura, and M. Imada, “Ab initio derivation of effective Hamiltonian for La2CuO4/La1.55Sr0.45CuO4 heterostructure”, Phys. Rev. B 99, 155148 (2019). [link] [arXiv]

  28. T. Tadano and S. Tsuneyuki, “Ab initio prediction of structural phase-transition temperature of SrTiO3 from finite-temperature phonon calculation”, J. Ceram. Soc. Jpn. 127, 404 (2019). [link]

  29. Y. Oba, T. Tadano, R. Akashi, and S. Tsuneyuki, “First-principles study of phonon anharmonicity and negative thermal expansion in ScF3”, Phys. Rev. Materials 3, 033601 (2019). [link] [arXiv]

  30. T. Tadano and S. Tsuneyuki, “Quartic Anharmonicity of Rattlers and its Effect on Lattice Thermal Conductivity of Clathrates from First Principles”, Phys. Rev. Lett. 120, 105901 (2018). [link] [arXiv]

  31. T. Tadano and S. Tsuneyuki, “First-principles lattice dynamics method for strongly anharmonic crystals”, J. Phys. Soc. Jpn. 87, 041015 (2018). [link] [arXiv]

  32. P. Norouzzadeh, J. S. Krasinski, and T. Tadano, “Thermal conductivity of type-I, type-II, and type-VIII pristine silicon clathrates: A first-principles study”, Phys. Rev. B 96, 245201 (2017). [link]

  33. A. Rohskopf, H. R. Seyf, K. Gordiz, T. Tadano, and A. Henry, “Empirical Interatomic Potentials Optimized for Phonon Properties”, npj Computational Materials 3, 27 (2017). [link]

  34. W. Sano, T. Koretsune, T. Tadano, R. Akashi, and R. Arita, “Effect of van Hove singularities on high-Tc superconductivity in H3S”, Phys. Rev. B 93, 094525 (2016). [link] [arXiv]

  35. T. Tadano and S. Tsuneyuki, “Self-consistent phonon calculations of lattice dynamical properties in cubic SrTiO3 with first-principles anharmonic force constants”, Phys. Rev. B 92, 054301 (2015). [link] [arXiv]

  36. T. Tadano, Y. Gohda and S. Tsuneyuki, “Impact of Rattlers on Thermal Conductivity of a Thermoelectric Clathrate: A First-Principles Study”, Phys. Rev. Lett. 114, 095501 (2015). [link] [arXiv]

  37. T. Tadano, Y. Gohda and S. Tsuneyuki, “Anharmonic force constants extracted from first-principles molecular dynamics: applications to heat transfer simulations”, J. Phys.: Condens. Matter 26, 225402 (2014). [link]

Conference Proceedings

  1. T. Tadano and S. Tsuneyuki, “First-principles analysis of anharmonic nuclear motion and thermal transport in thermoelectric materials”, AIP Conf. Proc. 1702, 090063 (2015). [link]

Book Chapters & Reviews

  1. 只野央将:「熱電材料研究に資する 第一原理格子動力学」,計算科学を活用した熱電変換材料の研究開発動向(株式会社 シーエムシー・リサーチ), 2022年. [link]

  2. 只野央将:「格子熱伝導の基礎理論と第一原理シミュレーション」,マイクロ・ナノ熱工学の進展(株式会社 エヌ・ティー・エス), 2021年. [link]
  3. 野村悠祐,平山元昭,北谷基治,只野央将,有田亮太郎:「ニッケル酸化物新超伝導体の発見:現状と展望」,『固体物理』 Vol. 55,491-503 (2020). [link]
  4. 只野央将,是常隆,有田亮太郎:「原子核の量子ゆらぎが支える高圧下LaH10の高温超伝導」,『固体物理』 Vol. 55,425-434 (2020). [link]
  5. 只野央将:「非調和効果を取り込める新しいフォノン計算ツールの開発」,『シミュレーション』 Vol. 39,No. 1,2020年.[link]
  6. 只野央将:「非調和フォノン物性の第一原理計算」,『応用物理』 Vol. 89, No. 1, 2020年. [link]
  7. 只野央将:「第一原理フォノン伝導計算」,マイクロ・ナノスケールの次世代熱制御技術 フォノンエンジニアリング(株式会社エヌ・ティー・エス),2017年. [link]
  8. 只野央将,常行真司:「第一原理からの非調和フォノンと格子熱伝導」,『固体物理』 Vol. 52,637-646 (2017). [link]